metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui Guo, Ren Yan-Wei, Jun Li* and Feng-Xing Zhang

Department of Chemistry, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China

Correspondence e-mail: junli@nwu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.005 Å R factor = 0.041 wR factor = 0.118 Data-to-parameter ratio = 19.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acetonitriledichloro(1,4,7-triazacyclodecane)cobalt(III) perchlorate

In the title compound, $[CoCl_2(C_7H_{17}N_3)(C_2H_3N)]ClO_4$, the Co^{3+} ion is six-coordinated by three N atoms from the 1,4,7-triazacyclodecane (tacd) ligand, two chloride anions and one N atom of the acetonitrile group, giving a distorted octahedral geometry. The cation and anion both have crystallographic mirror symmetry. Intermolecular hydrogen bonds link the ions into a three-dimensional network.

Comment

Macrocyclic triamines have attracted considerable interest in the synthesis of metal complexes of biological significance. In the past decades, a large number of metal complexes containing this kind of tripodal ligand have been prepared and investigated extensively (Wieghardt *et al.*, 1985; Hotzelmann *et al.*, 1992; Kimura *et al.*, 1990). For those metal complexes, most studies focused on stability and electronic spectra (Yang & Zompa, 1976; Zompa, 1978; McAuley *et al.*, 1984), and the structural data are limited (Hambley & Searle, 1995; Jackson *et al.*, 2004; Anderson *et al.*, 2004). In this paper, we report a new Co³⁺ complex with 1,4,7-triazacyclodecane (tacd), acetonitrile and Cl⁻ as ligands. Both the cation and the anion are located on a crystallographic mirror plane.

The structure of the complex consists of $[Co(tacd)(CH_3CN)Cl_2]^+$ cations and ClO_4^- anions (Fig. 1). The Co^{3+} ion is six-coordinate. The *cis* angles around Co^{3+} are in the range 86.89 (10)–93.67 (10) $^{\circ}$, indicating a distorted octahedral geometry (Table 1). The Co^{3+} ion lies in the equatorial plane composed of atoms N2, N2ⁱ, Cl1 and Cl1ⁱ (symmetry codes as in Table 1). The axial bond lengths are significantly shorter than the equatorial bonds lengths (Table 1). It is noteworthy that the Co1-N3 bond length is obviously shorter than those in most Co³⁺ amine complexes (Xie et al., 2005; Amadei et al., 1999; Anderson et al., 2004). The shorter Co-N3 bond distance means a strong coordination of acetonitrile to the Co^{3+} ion. The Co-Cl1 bond distance is unexceptional. In the cation, there is an intramolecular hydrogen bond (N2-H2···Cl1; Table 2). Another two intermolecular hydrogen bonds (N2-H2···O3 and N1-H1···O2) between cations and the perchlorate anions link these ions into a threedimensional network.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 31 March 2005 Accepted 3 May 2005 Online 14 May 2005

Experimental

The triamine 1,4,7-triazacyclodecane trihydrochloride (tacd·3HCl) was prepared as described previously (Richman & Atkins, 1974; Koyama & Yoshino, 1972). The other reagents were of analytical grade from commercial sources and were used without any further purification. To an acetonitrile/water (7:3, v/v) (10 ml) mixture were added $Co(ClO_4)_2 \cdot 6H_2O$ (0.366 g, 1.0 mmol), NaBF₄ (0.109 g, 1.0 mmol) and tacd·3HCl (0.248 g, 1 mmol). The mixture was adjusted to pH 7 with a solution of NaOH (2 mol l^{-1}). The solution was filtered and allowed to stand in air at room temperature for several days, giving purple crystals.

Crvstal data

$[CoCl_{2}(C_{7}H_{17}N_{3})(C_{2}H_{3}N)]ClO_{4}$ $M_{r} = 413.57$ Orthorhombic, <i>Pnma</i> a = 20.863 (4) Å b = 10.7899 (19) Å c = 7.3630 (13) Å V = 1657.5 (5) Å ³ Z = 4 $D_{x} = 1.657$ Mg m ⁻³ Data collection	Mo K α radiation Cell parameters from 1445 reflections $\theta = 2.7-23.6^{\circ}$ $\mu = 1.54 \text{ mm}^{-1}$ T = 273 (2) K Block, purple $0.21 \times 0.10 \times 0.03 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.735, T_{\max} = 0.955$ 10 135 measured reflections	2199 independent reflections 1526 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 28.7^{\circ}$ $h = -28 \rightarrow 27$ $k = -14 \rightarrow 14$ $l = -9 \rightarrow 7$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.118$ S = 1.06 2199 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0583P)^{2} + 0.6755P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.80 \text{ e } \text{Å}^{-3}_{-3}$

114 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Co1-N3	1.917 (4)	Co1-N2	1.963 (2)
Co1-N1	1.919 (3)	Co1-Cl1	2.2648 (9)
N3-Co1-N1	179.20 (15)	N3-Co1-Cl1	89.22 (8)
N3-Co1-N2	93.67 (10)	N1-Co1-Cl1	90.22 (8)
N1-Co1-N2	86.89 (10)	N2-Co1-Cl1	88.09 (8)
N2 ⁱ -Co1-N2	91.41 (14)	N2-Co1-Cl1 ⁱ	177.09 (7)

 $\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Symmetry code: (i) $x, -y + \frac{3}{2}, z$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N2 - H2 \cdots Cl1 \\ N2 - H2 \cdots O3^{ii} \\ N1 - H1 \cdots O2^{iii} \end{array}$	0.90 (6)	2.45 (7)	2.947 (3)	115 (5)
	0.90 (6)	2.27 (6)	2.961 (4)	133 (6)
	0.87 (8)	2.13 (9)	2.893 (6)	145 (8)

Symmetry codes: (ii) $-x + \frac{1}{2}, -y + 2, z + \frac{1}{2}$; (iii) x, y, z + 1.

Figure 1

View of the title complex, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted for clarity. [Symmetry code: (i) $x, -y + \frac{3}{2}, z$].

H atoms on C atoms were treated as riding, with C-H = 0.96 or 0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$. H atoms on N atoms were refined with $U_{iso}(H) = 0.16 \text{ Å}^2$ (see Table 2 for N-H distances).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

We sincerely thank the National Natural Science Foundation of China and the Provincial Natural Foundation of Shaanxi for support.

References

- Amadei, G. A., Dickman, M. H., Wazzeh, R. A., Dimmock, P. & Earley, J. E. (1999). Inorg. Chim. Acta, 288, 40-46.
- Anderson, P., Glerup, J., Gumm, A., Hansen, S. K. & Magnussen, M. (2004). Dalton. Trans. pp. 2929-2934.
- Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hambley, T. W. & Searle, G. H. (1995). Aust. J. Chem. 46, 1955-1960.
- Hotzelmann, R., Wieghardt, K., Flörke, U., Haupt, H.-J., Weatherburn, D. C., Bonvoisin, J., Blondin, G. & Girerd, J. J. (1992). J. Am. Chem. Soc. 114, 1681-1696.
- Jackson, W. G., Dickie, A. J., Bhula, R., McKeon, J. A., Spiccia, L., Brudenell, S. J., Hockless, D. C. R. & Willis, A. C. (2004). Inorg. Chem. 43, 6549-6556.
- Kimura, E., Shiota, T., Koike, T., Shiro, M. & Kodama, M. (1990). J. Am. Chem. Soc. 112, 5805-5811.
- Koyama, H. & Yoshino, T. (1972). Bull. Chem. Soc. Jpn, 45, 481-484.
- McAuley, A., Norman, P. R. & Olubuyide, O. (1984). Inorg. Chem. 23, 1938-1943
- Richman, J. E. & Atkins, T. J. (1974). J. Am. Chem. Soc. 96, 2268-2269.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wieghardt, K., Bossek, U., Ventur, D. & Weiss, J. (1985). J. Chem. Soc. Chem. Commun. pp. 347-349.
- Xie, Y.-S., Liu, X.-T., Zhang, M., Wei, K.-J. & Liu, Q.-L. (2005). Polyhedron, 24, 165-171.
- Yang, R. & Zompa, L. J. (1976). Inorg. Chem. 15, 1499-1502.
- Zompa, L. J. (1978). Inorg. Chem. 17, 2531-2536.